DATA MODELING OF GOLD PRICES USING SUPPORT VECTOR REGRESSION WITH LINEAR, POLYNOMIAL, AND RADIAL BASIS FUNCTION KERNELS

Authors

  • Arya Bima Sena Universitas Sebelas Maret
  • Dewi Retno Sari Saputro Universitas Sebelas Maret
  • Nughthoh Arfawi Kurdhi Universitas Sebelas Maret

DOI:

https://doi.org/10.37010/nuc.v5i02.1767

Keywords:

gold prices, SVR, kernel function, error

Abstract

Investment is a commitment of funds or other resources made with the goal of obtaining profits in the future. Gold is one of the commodities favored by investors because of its relatively stable value. Although relatively stable, gold prices experience fluctuations, which introduce risks associated with gold investments. The pattern of gold prices can be mathematically modeled using Support Vector Regression (SVR). SVR finds a function as a hyperplane (separating line) in the form of a regression function that fits all input data with an error and minimizes it as much as possible. SVR enables a balance between data fitting and overfitting through the use of kernel functions. The pattern of gold prices and SVR is the main focus of this research, aiming to model gold prices effectively. Furthermore, SVR seeks to obtain a hyperplane (regression function) that fits all input data by minimizing errors. The gold price modeling results using SVR indicated that the best model was obtained with a linear kernel, showing an error of 0.73% with parameters C = 10^(-4) and ? = 10^(-4). This implies the model's strong ability to follow data patterns accurately, resulting in highly reliable forecasting.

References

Amanda, R., Yasin, H., & Prahutama, A. (2014). Analisis support vector regression (SVR) dalam memprediksi kurs rupiah terhadap dollar Amerika Serikat. Journal Gaussian, 3(4), 849–857.

Chang, P. C., Wang, Y. W., & Liu, C. H. (2007). The development of a weighted evolving fuzzy neural network for PCB sales forecasting. Expert Systems with Applications, 32(1), 86–96.

Furi, R. P., Jondri, & Saepudin, D. (2015). Prediksi financial time series menggunakan independet. Vol. 2 No. 2, 3608.

Haykin, S. (2009). Neural networks and learning machines (3rd ed.). Pearson Education.

Isnaeni, R., Sudarmin, & Rais, Z. (2022). Analisis support vector regression (SVR) dengan kernel radial basis function (RBF) untuk memprediksi laju inflasi di Indonesia. VARIANSI: Journal of Statistics and Its Application on Teaching and Research, 4(1), 30–38.

Jiawei, H., Micheline, K., & Jian, P. (2011). Data mining concepts and techniques. Morgan Kaufmann.

Krisma, A., Azhari, M., & Widagdo, P. P. (2019). Perbandingan metode double exponential smoothing dan triple exponential smoothing dalam parameter tingkat error mean absolute percentage error (MAPE) dan mean absolute deviation (MAD). Prosiding Seminar Nasional Ilmu Komputer dan Teknologi Informasi, 2(1), 81–87.

Mengsi, L., Wu, J. L., Ji, T. Y., & Wu, Q. (2015). Short-term load forecasting using support vector. Power & Energy Society General Meeting.

Santosa, B. (2007). Data mining: Teknik pemanfaatan data untuk keperluan bisnis. Graha Ilmu.

Saputra, G. H., Wigena, A. H., & Sartono, B. (2019). Penggunaan support vector regression dalam pemodelan indeks saham syariah Indonesia dengan algoritme grid search. Indonesian Journal of Statistics and Its Application, 3(2), 148–160.

Scholkopf, B., & Smola, A. (2002). Learning with kernels. MIT Press.

Smola, A. J., & Scholkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199–222.

Tandelilin, E. (2010). Portofolio dan investasi: Teori dan aplikasi (Edisi Pertama). Kanisius.

Valarmathi, R., & Sheela, T. (2021). Heart disease prediction using hyperparameter optimization (HPO) tuning. Biomedical Signal Processing and Control, 70, 103033.

Vapnik, V. N. (1995). The nature of statistical learning theory. Springer.

Yu, P. S., Chen, S. T., & Chang, I. F. (2006). Support vector regression for real-time flood stage forecasting. Journal of Hydrology, 328(3-4), 704–716.

Published

2024-11-05

How to Cite

Sena, A. B., Saputro, D. R. S., & Kurdhi, N. A. (2024). DATA MODELING OF GOLD PRICES USING SUPPORT VECTOR REGRESSION WITH LINEAR, POLYNOMIAL, AND RADIAL BASIS FUNCTION KERNELS. NUCLEUS, 5(02). https://doi.org/10.37010/nuc.v5i02.1767

Issue

Section

Artikel
Abstract viewed = 48 times

Most read articles by the same author(s)