Rainfall Prediction Using Fuzzy Time Series

Authors

  • Adhi Susano Universitas Indraprasta PGRI
  • Wulan Anggraeni Universitas Indraprasta PGRI

DOI:

https://doi.org/10.37010/nuc.v2i2.619

Keywords:

rainfall, prediction, fuzzy time series

Abstract

Flood is one of the problems faced by DKI Jakarta Province. To be able to reduce losses caused by flooding is to predict rainfall. The type of research is quantitative research using rainfall prediction method using Fuzzy Time Series (FTS) which was developed by Stevenson & Porter (2009). The data used is rainfall data at Kemayoran Station in the period January 2018 to December 2020. The prediction accuracy results state that the FTS method has poor accuracy so that improvements are needed in the formation of interval intervals.

References

Adiyani, L. (2019). Nilai Faktor Pertumbuhan untuk Estimasi Hujan Rencana di Pulau Jawa. Jurnal Sumber Daya Air, 15(1), 56–68. https://doi.org/10.32679/jsda.v15i1.496

Desmonda, D., & Irwansyah, M. A. (2018). Prediksi Besaran Curah Hujan Menggunakan Metode Fuzzy Time Series. 6(4), 141–145.

Dewi, K. N. A., Bhari, S., & Irwansyah. (2021). Model prediksi curah hujan harian menggunakan jaringan syaraf tiruan backpropagation. Indonesian Physical Review, 2(1)(January 2019), 9–17. https://doi.org/10.29303/ipr.v2i1.17

Djuraidah, A., Suheni, C., & Nabila, B. (2019). Peramalan curah hujan ekstrim di provinsi banten dengan model ekstrim spasial. Media Statistika, 12(1), 50–62. https://doi.org/10.14710/medstat.12.1.50-62

Eldi. (2020). Analisis Penyebab Banjir di DKI Jakarta. Jurnal Inovasi Penelitian, 1(6), 1057–1064.

Ginting, S., & Putuhena, W. M. (2017). Hujan rancangan berdasarkan analisis frekuensi regional dengan metode tl-moment. Jurnal Sumber Daya Air, 12(1), 1–16. https://doi.org/10.32679/jsda.v12i1.160

Hong, W. (2008). Rainfall forecasting by technological machine learning models. Science Directed, 200, 41–57. https://doi.org/10.1016/j.amc.2007.10.046

Julisman, Z., & Erlin. (n.d.). Prediksi Tingkat Curah Hujan di Kota Pekanbaru menggunakan Logika Fuzzy Mamdani.

Merdekawati, G. I., & Ismail. (2018). Prediksi Curah Hujan di Jakarta Berbasis Algoritma Levenberg Marquardt. 24(100), 116–128.

Mukid, M. A., & Sugito. (2011). Model Prediksi Hujan dengan Pendekatan Regresi Proses Gaussian. 113–122.

Nara, O. D. (2017). Distribusi Data Ekstrim Pada Daerah Aliran Sungai Rain Teaching Trend Analysis of Extrim Data Distribution on River Flow Area. 17(1), 1–8.

Nugroho, S. P. (2002). Evaluasi dan analisis curah hujan sebagai faktor penyebab bencana banjir jakarta (in Bahasa). Jurnal Sains & Teknologi Modifikasi Cuaca, 3(2), 91–97.

Rachmawati, A. (2015). Prediksi Curah Hujan di Kota Pontianak Menggunakan Parameter Cuaca Sebagai Prediktor Pada Skala Bulanan, Dasarian dan Harian. Positron, V(2), 50–57.

Rachmawati, M. D., & Anifah, L. (2019). Prediksi Curah Hujan Menggunakan Metode Average Based dan High Order Fuzzy Time Series di Bandar Udara Juanda. 03, 11–15.

Rahmawati, R., Sari, D. E., & Rahma, A. N. (2021). Peramalan Curah Hujan di PPKS Bukit Sentang Dengan Menggunakan Fuzzy Time Series Ruey Chyn Tsaur. 17(1), 51–61. https://doi.org/10.24198/jmi.v17.n1.32820.51-61

Rinaldi, A. (2016). Sebaran Generalized Extreme Value (GEV) Dan Generalized Pareto (GP) untuk Pendugaan Curah Hujan Ekstrim di Wilayah DKI Jakarta. Al-Jabar?: Jurnal Pendidikan Matematika, 7(1), 75–84. https://doi.org/10.24042/ajpm.v7i1.137

Ritha, N., Bettiza, M., & Dufan, A. (2016). Prediksi Curah Hujan dengan Menggunakan Algoritma Levenberg- Marquardt dan Backpropagation. 5(2).

Rusgiyono, A., Wuryandari, T., & Rahmawati, A. (2015). Model Curah Hujan Ekstrem Di Kota Semarang Menggunakan Estimasi Moment Probabilitas Terboboti. Media Statistika, 8(1), 13–22. https://doi.org/10.14710/medstat.8.1.13-22

Sah, M., & Konstantin Y, D. (2005). Forecasting Enrollment Model Based on First-Order Fuzzy Time Series. Engineering and Technology, 1(1), 375–378. http://eprints.ecs.soton.ac.uk/15211/

Selim, K. S., & Elanany, G. A. (2013). A new method for short multivariate fuzzy time series based on genetic algorithm and fuzzy clustering. Advances in Fuzzy Systems, 2013. https://doi.org/10.1155/2013/494239

Seprima, M., & Defrianto. (2020). Prediksi Curah Hujan dan Kelembaban Udara Kota Pekan Baru Menggunakan Metode Monte Carlo. Komunikasi Fisika Indonesia, 17(3), 134–138. https://doi.org/10.31258/jkfi.17.3.134-138

Song, Q., & Chissom, B. S. (1993). Forecasting enrollments with fuzzy time series - Part I. Fuzzy Sets and Systems, 54(1), 1–9. https://doi.org/10.1016/0165-0114(93)90355-L

Stevenson, M., & Porter, J. E. (2009). Fuzzy Time Series Forecasting Using Percentage Change as the Universe of Discourse. 3(7), 464–467.

Sumi, S. M., Zaman, F., Mobile, A., Limited, S., & Hirose, H. (2012). A rainfall forecasting method using machine learning models and its application to the Fukuoka city case. Amcs, December, 1–13. https://doi.org/10.2478/v10006-012-0062-1

Syaifullah, M. D. (2013). Kondisi Curah Hujan pada Kejadian Banjir Jakarta dan Analisis Kondisi Udara atas Wilayah Jakarta Bulan Januari - Februari 2013. 13.

Tanuwijaya, K., & Chen, S. M. (2009). A new method to forecast enrollments using fuzzy time series and clustering techniques. Proceedings of the 2009 International Conference on Machine Learning and Cybernetics, 5(1), 3026–3029. https://doi.org/10.1109/ICMLC.2009.5212604

Yang, Y., Lin, H., Guo, Z., & Jiang, J. (2007). A data mining approach for heavy rainfall forecasting based on satellite image sequence analysis $. 33, 20–30. https://doi.org/10.1016/j.cageo.2006.05.010

Published

2021-11-30

How to Cite

Susano, A., & Anggraeni, W. (2021). Rainfall Prediction Using Fuzzy Time Series. NUCLEUS, 2(2), 78–84. https://doi.org/10.37010/nuc.v2i2.619

Issue

Section

Artikel
Abstract viewed = 642 times