The Implementation of a Filter Kalman Method Forecasting Rainfall Obtained Through Model ARIMA in Kota Jambi

Authors

  • Mellyani Aprilia Universitas Jambi
  • Nayla Desviona Institut Teknologi dan Bisnis Muhammadiyah Purbalingga

DOI:

https://doi.org/10.37010/nuc.v2i2.607

Keywords:

rainfall, ARIMA, kalman filter

Abstract

In the last three years the climatic conditions in Jambi City have experienced erratic weather conditions. One way to predict rainfall is using the Kalman Filter approach. However, in this case, the Kalman Filter method is implemented on the forecasting results from ARIMA (Autoregressive Integrated Moving Average) because there has been rainfall measurement data from 2008 to 2017 at the BMKG Muaro Jambi Climatology Station which is also a function of time and the existing pattern will be described with using Time Series Analysis. Time series data is data that has a time series of more than one year on one object or data collected from time to time on one object. ARIMA model will be used to predict the next data. Kalman filter is a model part of state space that can be applied in forecasting models. The Kalman filter consists of a prediction stage and a correction stage. This method uses a recursive technique to integrate the latest observational data into the model to correct previous predictions and make further predictions. This study aims to determine the implementation of the kalman filter method in predicting rainfall obtained through the ARIMA model in Jambi City. The results of the 2018 Jambi City rainfall prediction research show that the best ARIMA model formed is the ARIMA model (1,0,1). In the Kalman Filter model, a MAPE value of 24.92% is obtained, which indicates that the Kalman Filter has a fairly good predictive ability.

References

Gaspersz, V. (1998). Production Planning and Inventory Control. Jakarta: Gramedia Pustaka Utama.

Janzen, S. L. Dkk. (2016). Analisis Model Curah Hujan di Kota Ambon Menggunakan Metode Box-Jenkins. Pengembangan Penelitian Pendidikan Matematika Untuk Mendukung Peningkatan Kualitas Pembelajaran Matematika. Ambon: Universitas Pattimura.

Makridakis, S., Wheelwright, S. C., dan McGee, V. E. (1999). Metode Dan Aplikasi Peramalan. Diterjemahkan oleh U. S. Adriyanto, dan A. Basith. Jakarta: Airlangga.

Nurdin, D. (2015). Galeri Foto: Banjir Mulai Kepung Kota Jambi. http://jambi.tribunnews.com/2015/12/13/galeri-foto-banjir-mulai-kepung-kota-jambi. Diakses pada tanggal 9 Maret 2018.

Prihartono, H. (2015). Ini Sumber Kabut Asap yang Hari Ini Menyelimuti Kota Jambi. http://jambi.tribunnews.com/2015/09/25/ini-sumber-kabut-asap-yang-hari-ini-menyelimuti-kota-jambi. Diakses pada tanggal 9 Maret 2018.

Wei, W.W.S. (2006). Time Series Analysis Univariate and Multivariate Methods Second Edition. Canada: Pearson Education Inc.

Winarso., P.A. (2000). Kondisi dan Masalah Penyusunan Prakiraan Cuaca dan Iklim dan Proyeksinya di Indonesia. Jakrta: Badan Meteorologi dan Geofisika.

Published

2021-11-30

How to Cite

Aprilia, M., & Desviona, N. (2021). The Implementation of a Filter Kalman Method Forecasting Rainfall Obtained Through Model ARIMA in Kota Jambi. NUCLEUS, 2(2), 69–77. https://doi.org/10.37010/nuc.v2i2.607

Issue

Section

Artikel
Abstract viewed = 304 times

Most read articles by the same author(s)