Bibliometric Analysis of Spline Regression Model for Trend Mapping and Strategy Development Research Using Vosviewer
DOI:
https://doi.org/10.37010/nuc.v5i02.1760Keywords:
Bibliometric analysis, Spline regression, Trend mapping, VOSviewer, Development strategyAbstract
Bibliometric analysis is a quantitative method used to measure and analyze scientific literature. This technique involves the collection and analysis of publication data, such as journal articles, books, and conferences, to evaluate and understand patterns of scientific communication, research productivity, author collaboration, journal impact, and trends within a scientific field. Bibliometric analysis has a limitation in that it is challenging to visualize effectively, necessitating the use of software for proper visualization. Therefore, this article discusses bibliometric analysis on spline regression for trend mapping and strategy development using VOSviewer software. The research results show that the visualization of spline regression keywords with VOSviewer can help in understanding patterns of relationships between variables, research trends, and network structures in scientific literature. Based on the analysis results, bibliometric analysis on spline regression can be visualized in trend mapping, which can aid in planning further research strategies, including identifying collaboration opportunities and underexplored research areas.
References
Alsharif, A. H., & Baharun, R. (2020). Research trends of neuromarketing: A bibliometric analysis. Journal of Theoretical and Applied Information Technology, 15, 15. Retrieved from www.jatit.org
Anker, M. S., Hadzibegovic, S., Lena, A., & Haverkamp, W. (2019). The difference in referencing in Web of Science, Scopus, and Google Scholar. ESC Heart Failure, 6(6), 1291–1312. https://doi.org/10.1002/ehf2.12583
Auza-Santiváñez, J. C., Carías Díaz, J. A., Vedia Cruz, O. A., Robles-Nina, S. M., Sánchez Escalante, C., & Apaza Huanca, B. (2023). Bibliometric analysis of the worldwide scholarly output on artificial intelligence in Scopus. Gamification and Augmented Reality, 1, 11. https://doi.org/10.56294/gr202311
Bartol, T., Stopar, K., & Budimir, G. (2014). Visualization and knowledge discovery in metadata enriched aggregated data repositories harvesting from Scopus and Web of Science.
Bornmann, L., & Mutz, R. (2015). Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references.
Coronado, D., Acosta, M., & Leon, D. (2007). Regional planning of R&D and science–technology interactions in Andalucia: A bibliometric analysis of patent documents. CEP, 1075–1095. Retrieved from https://www.tandfonline.com/journals/ceps20
Erfanmanesh, M., Tahira, M., & Abrizah, A. (2017). The publication success of 102 nations in Scopus and the performance of their Scopus-indexed journals. Publishing Research Quarterly, 33(4), 421–432. https://doi.org/10.1007/s12109-017-9540-5
Fleer, M. (2009). Understanding the dialectical relations between everyday concepts and scientific concepts within play-based programs. Research in Science Education, 39(2), 281–306. https://doi.org/10.1007/s11165-008-9085-x
Fornacciari, P., Mordonini, M., Nonelli, M., Sani, L., & Tomaiuolo, M. (2017). Knowledge discovery on Scopus.
Hafeez, D. M., Jalal, S., & Khosa, F. (2019). Bibliometric analysis of manuscript characteristics that influence citations: A comparison of six major psychiatry journals. Journal of Psychiatric Research, 108, 90–94. Retrieved from https://www.sciencedirect.com/journal/journal-of-psychiatric-research
Haueis, P. (2024). A generalized patchwork approach to scientific concepts.
Husin, M. Md, Aziz, S., & Iqbal, M. (2024). A bibliometric and visualization analysis of Islamic fund management research. Journal of Islamic Marketing. https://doi.org/10.1108/JIMA-04-2023-0116
Khan, A., Choudhury, N., Uddin, S., Hossain, L., & Baur, L. A. (2016). Longitudinal trends in global obesity research and collaboration: A review using bibliometric metadata. Obesity Reviews, 17(4), 377–385. https://doi.org/10.1111/obr.12372
Krauskopf, E. (2019). Missing documents in Scopus: The case of the journal Enfermeria Nefrologica. Scientometrics, 119(4), 1237–1250. https://doi.org/10.1007/s11192-019-03040-z
Machá?ek, V., & Srholec, M. (2021). RETRACTED ARTICLE: Predatory publishing in Scopus: Evidence on cross-country differences. Scientometrics, 1–15. https://doi.org/10.1007/s11192-020-03852-4
Mahmood, K., & Dean, A. H. (2017). Review of Google Scholar, Web of Science, and Scopus search results: The case of inclusive education research. Retrieved from http://digitalcommons.unl.edu/libphilprac/1544
Muhuri, P. K., Shukla, A. K., & Abraham, A. (2019). Industry 4.0: A bibliometric analysis and detailed overview. Engineering Applications of Artificial Intelligence, 78, 218–235. https://doi.org/10.1016/j.engappai.2018.11.007
Saputro, D. R. S., Prasetyo, H., Wibowo, A., Khairina, F., Sidiq, K., & Wibowo, G. N. A. (2023). Bibliometric analysis of neural basis expansion analysis for interpretable time series (N-Beats) for research trend mapping. BAREKENG: Jurnal Ilmu Matematika dan Terapan, 17(2), 1103–1112. https://doi.org/10.30598/barekengvol17iss2pp1103-1112
Suresh, N., Thomas, B., & Joseph, J. (2024). Bibliometric analysis and visualization of scientific literature on heart disease classification using a logistic regression model. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11283593/
Vilzez-Roman, C., Sanguinetti, S., & Mauricio-Salas, M. (2021). Applied bibliometrics and information visualization for decision-making processes in higher education institutions. Library Hi Tech, 263–283. https://doi.org/10.1108/LHT-10-2019-0209
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Andre Fajry Al Barra, Dewi Retno Sari Saputro, Purnami Widianingsih
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.